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Learning to Turn Fantasy Basketball Into Real Money
Introduction to Machine Learning

Abstract
Fantasy basketball is a rapidly growing multi-
billion-dollar industry with colossal yet largely
untapped potential for data mining. In fantasy
basketball, fantasy owners aim to win money
by picking the top statistically-performing NBA
players on a weekly basis. In each game, every
fantasy NBA player earns a certain number of
points based on the actions of the corresponding
real-life NBA player. With this in mind, we
develop a machine learning (ML) model that
predicts the statistical performance of NBA
players in a given game. We perform feature
selection from a wide array of both basic and
derived statistics for individual players and
opposing defenses. Linear regression, random
forest regression, and support vector regression
are compared and both feature and model pa-
rameters are searched to find the most accurate
model for predicting future game fantasy scores.
Additionally, we extend this model to predict
the outcome of a given game by aggregating the
individual fantasy scores of the players on each
team in the game.

1. Introduction
In standard head-to-head fantasy basketball scoring,
players earn fantasy points based on in-game actions
and statistics. Table 1 shows a common fantasy scoring
formula which is used for our study.

A fantasy players goal is to score the maximum number
of points with his or her given roster every game from a
selected subset of players typically drafted at the beginning
of the season. Typically there are more players to choose
from than there are available positions on the roster, so the
ability to predict which players will perform the best in
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Table 1. Scoring settings based on Yahoo! Fantasy Basketball ex-
press settings

SCORING SETTINGS COEFFICIENT
FIELD GOALS ATTEMPTED -0.45 POINTS
FIELD GOALS MADE 1.0 POINTS
FREE THROWS ATTEMPTED -0.75 POINTS
FREE THROWS MADE 1.0 POINTS
3-POINT SHOTS MADE 3.0 POINTS
POINTS SCORED 0.5 POINTS
TOTAL REBOUNDS 1.5 POINTS
ASSISTS 1.5 POINTS
STEALS 2.0 POINTS
BLOCKED SHOTS 3.0 POINTS
TURNOVERS -2.0 POINTS

an upcoming game is extremely vital information. And to
evaluate a players performance, in comparison to the rest
of his peers and opponents, we use a metric of evaluation
called Rank Difference Error, henceforth referred to as
RDE. Rank Difference Error is the absolute difference
between the actual rank and the predicted rank of a player
in a game, playing for a specific team. Additionally, we
leverage our fantasy score prediction model to present a
novel method for game win-loss outcome prediction. We
achieve this by aggregating the individual fantasy scores
of the players on each team in the game and comparing
the first teams total fantasy score to the second teams total
fantasy score.

2. Related Work
Most previous literature on ML in the NBA focuses
on predicting the outcomes of NBA games (i.e., which
team wins). State-of-the-art linear and logistic regression
models correctly predict the outcome of about 68% of
games, while more complicated models such as artificial
neural networks (ANNs) and deep belief networks (DBNs)
have yielded similar success. However, there has been
significantly less research related to predicting individual
player stats, particularly as applied to fantasy basketball.
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Figure 1. High Level System Design

3. Methodology
In this section, we provide an outline of the regression
framework beginning with data collection and cleaning.
Second, we outline the individual player model and
parameter-tuning methodology used for aggregation of
statistics at the team level. Third, we present the player-
distance heuristic used to rank players in a start-or-sit
fashion. Finally, we propose an aggregation model that
leverages previously derived fantasy scores to predict
individual game outcomes.

3.1. Data Extraction and Cleaning

The 2015 NBA season franchise consists of 6 divisions
with 5 teams each, each of which play 82 games. Each
team has anywhere from 15-25 players on its roster re-
sulting in a significant number of game-player predictions
necessary to make an exhaustive predictive model on the
entire season. To limit the the computational complexity
of the model, we have arbitrarily chosen the Memphis
Grizzlies as the template team and focus on games 65-74
of the regular season. This limits our computation to the
11 teams (Memphis Grizzlies and 10 opponents) and 10

Table 2. Test set for games 65-74 of the 2014-2015 Memphis
Grizzlies season

G DATE OPP W/L
65 3/12/15 @ WAS L
66 3/14/15 MIL W
67 3/16/15 DEN W
68 3/17/15 @ DET L
69 3/20/15 @ DAL W
70 3/21/15 POR W
71 3/23/15 @ NYK W
72 3/25/15 CLE L
73 3/27/15 GSW L
74 3/29/15 @ SAS L

games shown in Table 2.

Although each team plays 82 games in a regular season,
a player may play fewer than 82 games for a variety of
reasons such as injury or not being put on the court by
the coach. Sometimes, players do not play for the the
entirety of the game and so no statistics are recorded for
that game. In order to account for the probability of not
playing a game, we consider two separate scenarios for
game inactivity. (1) a player does not play a few game
at various times throughout the season, typically to rest a
player or for unique circumstances (2) a player does not
play for a large continuous period of time, ranging for
reasons such as being traded, injury, simply not putting up
enough points to play as a starter most games. In the case
of (1), we do not want the missed game to negatively affect
the model so we remove the game from the dataset if the
player has played at least 10 minutes on the court averaged
over the past 5 games. Likewise, if a player does not meet
this 10 minute, 5 game criteria, then we want to account
for the low likelihood of playing an upcoming game by
zeroing out the fields of that game statistics.

3.2. Individual Player Model and Parameter Tuning

The individual player model is predicated on the hy-
pothesis that a players statistical performance against a
particular team correlates strongly with: (1) the players
statistical performance in recent games; (2) the statistical
performance of the opposing teams defense in recent
games. Under this assumption, our feature space is
composed of features that represent: (1) the players
statistical performance in the previous game; (2) the
players average statistical performance across the past N
games; (3) the opposing team defenses average statistical
performance across the past N games; (4) the opposing
team defenses average statistical performance across all
of the games played in the season thus far. The value for
N is a tuned parameter that varies from player to player



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Chan-Hu-Shivakumar

and was found by performing an exhaustive search over
a range of moving-average values from 2 through 25. To
quantify player performance in each game, our features
consist of common traditional statistics and advanced
statistics. In addition, we perform PCA in order to reduce
the dimensionality of the data. The number of components
chosen for a given player is found through an exhaustive
search through PCA analysis of 1 to 92 dimensions.
For each combination of game and player, we produce
an instance consisting of a 92-element feature vector and
a real target value representing the total fantasy points
earned by the player in the given game. We built a M-game
training set corresponding to the number of remaining
games after setting aside a 15-game test set. Games are
then averaged based on the N parameter and potentially
removed according to the methods described above.

3.2.1. OPTIMAL MOVING WINDOW AND PCA

Initially, we set out to search over all player models to
find an optimum moving-average and number of prin-
cipal components that would be a two sizes fit all, but
to be true to our intuition that each players statistical
performance in a given game is unique, searching over
the entire space of moving-average possibilities and
number of principal components to find the combination
of the two parameters that gave best R2 scores over
the training data was a better idea. And as you can see
in Table 3, this decreased our RDE by a significant amount.

Four different regression models were tested. We confined
ourselves to the readily available packages in the Sklearn
Library, specifically testing Linear Regression, Ridge
Regression, Random Forest Regression and Support
Vector Regression.

We first narrowed down our list of algorithms by an initial
test over our testing data. Our best performing algorithm
straight off the shelf was Support Vector Regression
because given the nature of SVRs design, we were able to
get reasonably good values without needing to implement
a prior step of PCA reduction. The second best algorithm
was Random Forest Regression. The results for each of
these algorithms is shown in Table 3.

3.2.2. PARAMETER TUNING AND FINAL RESULTS

The SVR model with a rbf kernel performed the best
among the four models, with a C value of 1 ∗ 106 and a γ
value of 1 ∗ 10−5. We arrived at these optimal parameters
for SVR using Sklearns GridsearchCV to test over a wide
range of C and Gamma parameters. The final results and

Figure 2. Fantasy scores for Cleveland Cavaliers player James
Jones

comparison are illustrated in Table 3.

3.3. Player-Distance Heuristic

The evaluation metric used here is RDE. We decided to use
this metric rather than measuring the difference between
the actual fantasy score and the predicted fantasy score
because the absolute value of the predicted fantasy score
was slightly noisy, but our model did however capture
the players performance trends quite well. An example is
shown in Figure 2.

As you can see, while the predicted scores may not be very
similar, the overall trend has been predicted. We decided
to use this intuition as a foundation to building the Rank
Difference Error heuristic.

To predict each players performance on the games played
by MEM, i.e each instance in the test set, we train our
model on the players past performance, averaged using a
specific moving window size, and in the case of Random
Forest Regression and Linear Regression, a specific
number of PCA components. These scores are then used
to rank players in a team based on their fantasy score.
Players with higher fantasy scores receive higher ranks
and players with lower fantasy scores receive lower ranks.
Additionally, a set of ranks is created using the actual
score data. We then compute the RDE for each player in
a given game by finding the absolute difference between
the predicted score and the actual score. We then calculate
the mean RDE over all player, in all teams through the set
of 15 games. Our best value of RDE using Support Vector
Regression was roughly 3.20, which essentially means that
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Table 3. Algorithm Comparison with RDE score metric

ALGORITHM RDE W/O TUNING RDE W/ TUNING RDE W/O TUNING RDE W/ TUNING
SINGLE MODEL SINGLE MODEL MULTI-MODEL MULTI-MODEL

SUPPORT VECTOR REGRESSION 4.04203 3.64597 3.87722 3.20426
LINEAR REGRESSION 4.14318 3.63612

RANDOM FOREST REGRESSOR 3.77307 3.64302 3.56026 3.45550

our prediction of a players rank is approximate to 3.20
rank positions in a given game.

3.4. Game Outcome Prediction

A natural extension of predicting individual player per-
formance in a particular game is predicting the outcome
of that game. Given two teams, Team 1 and Team 2, we
use the procedure described above to predict the number
of fantasy points scored by each of the active players on
Team 1 and by each of the active players on Team 2. For
the learning component, we use a moving average of seven
games and support vector regression with radial basis
function kernel, C = 106, and γ = 1E-05. Next, we take
the sum of the predicted fantasy points scored by Team 1s
players and compare it to the sum of the predicted fantasy
points scored by Team 2s players. Our game outcome
prediction model then predicts that the team with the
higher predicted fantasy points total will win the game
matchup.

In this application, the threshold for precision in predicting
each teams total points is not as high as for the player
ranking application described in the previous sections.
Due to the lower complexity of this binary classification
problem and the fact that prediction error for a given player
is smoothed out when we aggregate the total prediction
error for the corresponding team, we are allowed more
room for error in our predictions.

As in the previous sections, we evaluated our model on
games 65 through 74 for the Memphis Grizzlies during the
2014-2015 regular season. Team 1 denotes the Memphis
Grizzlies (MEM), while Team 2 denotes MEMs opponent.
The results of this experiment are shown in Table 4.

As shown in Table 4, our model using points as the target
value predicted the results of games 65 to 74 with 70%
accuracy, performing slightly better than our model using
fantasy points as the target value.

Figure 3. Sampling of player R2 values across varying moving av-
erage parameter

4. Performance Evaluation
Figure 4 shows the results of sweeping the moving average
value for the SVR-rbf kernel from 2 through 25. Although
a unique value is derived for each player to best fit the
model, figure 1 shows that best R-squared performance
and thus most correlated games tends to lie in the range of
the past 3-7 games.

Similarly, Figure 5 shows the PCA analysis that was
performed for each player to best fit the number of compo-
nents to transform the data. As with the moving average,
a unique value was optimized for each player but values
tend to range from 5-15.

5. Conclusion
Overall, our learning models performance results in player
fantasy score prediction and game outcome prediction are
very encouraging. With an overall RDE score of approx-
imately 3.2, our player fantasy score prediction/ranking
system could certainly benefit fantasy basketball owners
who need help setting their lineup for a certain game.
Looking at our performance results, the model might
not be strong enough that an owner could blindly rely
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Table 4. Game outcome prediction results using points as the target value

GAME 65 66 67 68 69
TEAM 2 WAS MIL DEN DET DAL

TEAM 1 TOTAL POINTS 52.29244 148.04757 144.25861 154.25470 164.84836
TEAM 2 TOTAL POINTS 149.82268 194.17713 143.84321 243.45083 252.68286

PREDICTED TEAM 1 OUTCOME L L W L L
ACTUAL TEAM 1 OUTCOME L W W L W

GAME 70 71 72 73 74
TEAM 2 POR NYK CLE GSW SAS

TEAM 1 TOTAL POINTS 167.19978 120.18366 148.22923 150.33212 141.24276
TEAM 2 TOTAL POINTS 169.37400 116.49133 217.98367 157.18418 147.08796

PREDICTED TEAM 1 OUTCOME L W L L L
ACTUAL TEAM 1 OUTCOME W W L L L

Figure 4. Sampling of player R2 values across varying compo-
nents in PCA

on it in setting his or her lineup, but it provides some
non-trivial insight about how certain players are likely
to perform against a given opponent in the context of a
certain game/season situation. Particularly, in situations
where the fantasy owner is having trouble deciding which
of two similarly-performing players to start, our fantasy
score prediction/ranking system would be quite helpful.
Furthermore, for those who bet on the outcomes of NBA
games, our game outcome prediction system could be a
useful tool. In our limited experiment, our model achieved
70% accuracy. This is on par with the state-of-the-art NBA
game outcome prediction models, which predict game
outcomes with 68% accuracy (note that the state-of-the-art
models have been tested on more games).

However, there are a number of possible improvements to
our learning model. First, our performance might improve
with an increase in the size of our training set. Our model
uses 15 training games for each prediction. The model
might have benefited from using more training games per

prediction, but, because it is better to train the model using
only games from the current season, there is a tradeoff
between number of training games and number of games
available to make predictions on. Further experimentation
with different numbers of training games could give us
more insight about how to optimize our performance with
respect to this tradeoff. Second, our model has a rich
feature space (92 basic and advanced metrics), but may
include too many features that are not strongly correlated
with players fantasy points. This could be remedied by
using more sophisticated feature selection techniques (e.g.,
greedy hill climbing, targeted projection pursuit) and by
introducing new and potentially more expressive fea-
tures (e.g., team chemistry statistics, shooting tendencies
statistics, SportVU tracking statistics). Third, to further
validate our model, we need to acquire more player game
log data (both from the current season and past seasons)
so that we can test our model on more than just ten games.
Data acquisition was a significant obstacle for us because,
for each game, we need to scrape and clean basic and
advanced stats data for all of the players on both teams in
the game, and, even using an automated process, doing
so for each player took a considerable amount of time.
With more data, we could perform k-fold cross validation,
which would in turn help us determine the best learning
parameters and feature set.
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