
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Learning to Turn Fantasy Basketball Into Real Money
Introduction to Machine Learning

Abstract
Fantasy basketball is a rapidly growing multi-
billion-dollar industry with colossal yet largely
untapped potential for data mining. In fantasy
basketball, fantasy owners aim to win money
by picking the top statistically-performing NBA
players on a weekly basis. In each game, every
fantasy NBA player earns a certain number of
points based on the actions of the corresponding
real-life NBA player. With this in mind, we
develop a machine learning (ML) model that
predicts the statistical performance of NBA
players in a given game. We perform feature
selection from a wide array of both basic and
derived statistics for individual players and
opposing defenses. Linear regression, random
forest regression, and support vector regression
are compared and both feature and model pa-
rameters are searched to find the most accurate
model for predicting future game fantasy scores.
Additionally, we extend this model to predict
the outcome of a given game by aggregating the
individual fantasy scores of the players on each
team in the game.

1. Introduction
In standard head-to-head fantasy basketball scoring,
players earn fantasy points based on in-game actions
and statistics. Table 1 shows a common fantasy scoring
formula which is used for our study.

A fantasy players goal is to score the maximum number
of points with his or her given roster every game from a
selected subset of players typically drafted at the beginning
of the season. Typically there are more players to choose
from than there are available positions on the roster, so the
ability to predict which players will perform the best in

University of Pennsylvania, CIS 419/519 Course Project.
Copyright 2015 by the author(s).

Table 1. Scoring settings based on Yahoo! Fantasy Basketball ex-
press settings

SCORING SETTINGS COEFFICIENT
FIELD GOALS ATTEMPTED -0.45 POINTS
FIELD GOALS MADE 1.0 POINTS
FREE THROWS ATTEMPTED -0.75 POINTS
FREE THROWS MADE 1.0 POINTS
3-POINT SHOTS MADE 3.0 POINTS
POINTS SCORED 0.5 POINTS
TOTAL REBOUNDS 1.5 POINTS
ASSISTS 1.5 POINTS
STEALS 2.0 POINTS
BLOCKED SHOTS 3.0 POINTS
TURNOVERS -2.0 POINTS

an upcoming game is extremely vital information. And to
evaluate a players performance, in comparison to the rest
of his peers and opponents, we use a metric of evaluation
called Rank Difference Error, henceforth referred to as
RDE. Rank Difference Error is the absolute difference
between the actual rank and the predicted rank of a player
in a game, playing for a specific team. Additionally, we
leverage our fantasy score prediction model to present a
novel method for game win-loss outcome prediction. We
achieve this by aggregating the individual fantasy scores
of the players on each team in the game and comparing
the first teams total fantasy score to the second teams total
fantasy score.

2. Related Work
Most previous literature on ML in the NBA focuses
on predicting the outcomes of NBA games (i.e., which
team wins). State-of-the-art linear and logistic regression
models correctly predict the outcome of about 68% of
games, while more complicated models such as artificial
neural networks (ANNs) and deep belief networks (DBNs)
have yielded similar success. However, there has been
significantly less research related to predicting individual
player stats, particularly as applied to fantasy basketball.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Chan-Hu-Shivakumar

Figure 1. High Level System Design

3. Methodology
In this section, we provide an outline of the regression
framework beginning with data collection and cleaning.
Second, we outline the individual player model and
parameter-tuning methodology used for aggregation of
statistics at the team level. Third, we present the player-
distance heuristic used to rank players in a start-or-sit
fashion. Finally, we propose an aggregation model that
leverages previously derived fantasy scores to predict
individual game outcomes.

3.1. Data Extraction and Cleaning

The 2015 NBA season franchise consists of 6 divisions
with 5 teams each, each of which play 82 games. Each
team has anywhere from 15-25 players on its roster re-
sulting in a significant number of game-player predictions
necessary to make an exhaustive predictive model on the
entire season. To limit the the computational complexity
of the model, we have arbitrarily chosen the Memphis
Grizzlies as the template team and focus on games 65-74
of the regular season. This limits our computation to the
11 teams (Memphis Grizzlies and 10 opponents) and 10

Table 2. Test set for games 65-74 of the 2014-2015 Memphis
Grizzlies season

G DATE OPP W/L
65 3/12/15 @ WAS L
66 3/14/15 MIL W
67 3/16/15 DEN W
68 3/17/15 @ DET L
69 3/20/15 @ DAL W
70 3/21/15 POR W
71 3/23/15 @ NYK W
72 3/25/15 CLE L
73 3/27/15 GSW L
74 3/29/15 @ SAS L

games shown in Table 2.

Although each team plays 82 games in a regular season,
a player may play fewer than 82 games for a variety of
reasons such as injury or not being put on the court by
the coach. Sometimes, players do not play for the the
entirety of the game and so no statistics are recorded for
that game. In order to account for the probability of not
playing a game, we consider two separate scenarios for
game inactivity. (1) a player does not play a few game
at various times throughout the season, typically to rest a
player or for unique circumstances (2) a player does not
play for a large continuous period of time, ranging for
reasons such as being traded, injury, simply not putting up
enough points to play as a starter most games. In the case
of (1), we do not want the missed game to negatively affect
the model so we remove the game from the dataset if the
player has played at least 10 minutes on the court averaged
over the past 5 games. Likewise, if a player does not meet
this 10 minute, 5 game criteria, then we want to account
for the low likelihood of playing an upcoming game by
zeroing out the fields of that game statistics.

3.2. Individual Player Model and Parameter Tuning

The individual player model is predicated on the hy-
pothesis that a players statistical performance against a
particular team correlates strongly with: (1) the players
statistical performance in recent games; (2) the statistical
performance of the opposing teams defense in recent
games. Under this assumption, our feature space is
composed of features that represent: (1) the players
statistical performance in the previous game; (2) the
players average statistical performance across the past N
games; (3) the opposing team defenses average statistical
performance across the past N games; (4) the opposing
team defenses average statistical performance across all
of the games played in the season thus far. The value for
N is a tuned parameter that varies from player to player



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Chan-Hu-Shivakumar

and was found by performing an exhaustive search over
a range of moving-average values from 2 through 25. To
quantify player performance in each game, our features
consist of common traditional statistics and advanced
statistics. In addition, we perform PCA in order to reduce
the dimensionality of the data. The number of components
chosen for a given player is found through an exhaustive
search through PCA analysis of 1 to 92 dimensions.
For each combination of game and player, we produce
an instance consisting of a 92-element feature vector and
a real target value representing the total fantasy points
earned by the player in the given game. We built a M-game
training set corresponding to the number of remaining
games after setting aside a 15-game test set. Games are
then averaged based on the N parameter and potentially
removed according to the methods described above.

3.2.1. OPTIMAL MOVING WINDOW AND PCA

Initially, we set out to search over all player models to
find an optimum moving-average and number of prin-
cipal components that would be a two sizes fit all, but
to be true to our intuition that each players statistical
performance in a given game is unique, searching over
the entire space of moving-average possibilities and
number of principal components to find the combination
of the two parameters that gave best R2 scores over
the training data was a better idea. And as you can see
in Table 3, this decreased our RDE by a significant amount.

Four different regression models were tested. We confined
ourselves to the readily available packages in the Sklearn
Library, specifically testing Linear Regression, Ridge
Regression, Random Forest Regression and Support
Vector Regression.

We first narrowed down our list of algorithms by an initial
test over our testing data. Our best performing algorithm
straight off the shelf was Support Vector Regression
because given the nature of SVRs design, we were able to
get reasonably good values without needing to implement
a prior step of PCA reduction. The second best algorithm
was Random Forest Regression. The results for each of
these algorithms is shown in Table 3.

3.2.2. PARAMETER TUNING AND FINAL RESULTS

The SVR model with a rbf kernel performed the best
among the four models, with a C value of 1 ∗ 106 and a γ
value of 1 ∗ 10−5. We arrived at these optimal parameters
for SVR using Sklearns GridsearchCV to test over a wide
range of C and Gamma parameters. The final results and

Figure 2. Fantasy scores for Cleveland Cavaliers player James
Jones

comparison are illustrated in Table 3.

3.3. Player-Distance Heuristic

The evaluation metric used here is RDE. We decided to use
this metric rather than measuring the difference between
the actual fantasy score and the predicted fantasy score
because the absolute value of the predicted fantasy score
was slightly noisy, but our model did however capture
the players performance trends quite well. An example is
shown in Figure 2.

As you can see, while the predicted scores may not be very
similar, the overall trend has been predicted. We decided
to use this intuition as a foundation to building the Rank
Difference Error heuristic.

To predict each players performance on the games played
by MEM, i.e each instance in the test set, we train our
model on the players past performance, averaged using a
specific moving window size, and in the case of Random
Forest Regression and Linear Regression, a specific
number of PCA components. These scores are then used
to rank players in a team based on their fantasy score.
Players with higher fantasy scores receive higher ranks
and players with lower fantasy scores receive lower ranks.
Additionally, a set of ranks is created using the actual
score data. We then compute the RDE for each player in
a given game by finding the absolute difference between
the predicted score and the actual score. We then calculate
the mean RDE over all player, in all teams through the set
of 15 games. Our best value of RDE using Support Vector
Regression was roughly 3.20, which essentially means that



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Chan-Hu-Shivakumar

Table 3. Algorithm Comparison with RDE score metric

ALGORITHM RDE W/O TUNING RDE W/ TUNING RDE W/O TUNING RDE W/ TUNING
SINGLE MODEL SINGLE MODEL MULTI-MODEL MULTI-MODEL

SUPPORT VECTOR REGRESSION 4.04203 3.64597 3.87722 3.20426
LINEAR REGRESSION 4.14318 3.63612

RANDOM FOREST REGRESSOR 3.77307 3.64302 3.56026 3.45550

our prediction of a players rank is approximate to 3.20
rank positions in a given game.

3.4. Game Outcome Prediction

A natural extension of predicting individual player per-
formance in a particular game is predicting the outcome
of that game. Given two teams, Team 1 and Team 2, we
use the procedure described above to predict the number
of fantasy points scored by each of the active players on
Team 1 and by each of the active players on Team 2. For
the learning component, we use a moving average of seven
games and support vector regression with radial basis
function kernel, C = 106, and γ = 1E-05. Next, we take
the sum of the predicted fantasy points scored by Team 1s
players and compare it to the sum of the predicted fantasy
points scored by Team 2s players. Our game outcome
prediction model then predicts that the team with the
higher predicted fantasy points total will win the game
matchup.

In this application, the threshold for precision in predicting
each teams total points is not as high as for the player
ranking application described in the previous sections.
Due to the lower complexity of this binary classification
problem and the fact that prediction error for a given player
is smoothed out when we aggregate the total prediction
error for the corresponding team, we are allowed more
room for error in our predictions.

As in the previous sections, we evaluated our model on
games 65 through 74 for the Memphis Grizzlies during the
2014-2015 regular season. Team 1 denotes the Memphis
Grizzlies (MEM), while Team 2 denotes MEMs opponent.
The results of this experiment are shown in Table 4.

As shown in Table 4, our model using points as the target
value predicted the results of games 65 to 74 with 70%
accuracy, performing slightly better than our model using
fantasy points as the target value.

Figure 3. Sampling of player R2 values across varying moving av-
erage parameter

4. Performance Evaluation
Figure 4 shows the results of sweeping the moving average
value for the SVR-rbf kernel from 2 through 25. Although
a unique value is derived for each player to best fit the
model, figure 1 shows that best R-squared performance
and thus most correlated games tends to lie in the range of
the past 3-7 games.

Similarly, Figure 5 shows the PCA analysis that was
performed for each player to best fit the number of compo-
nents to transform the data. As with the moving average,
a unique value was optimized for each player but values
tend to range from 5-15.

5. Conclusion
Overall, our learning models performance results in player
fantasy score prediction and game outcome prediction are
very encouraging. With an overall RDE score of approx-
imately 3.2, our player fantasy score prediction/ranking
system could certainly benefit fantasy basketball owners
who need help setting their lineup for a certain game.
Looking at our performance results, the model might
not be strong enough that an owner could blindly rely



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Chan-Hu-Shivakumar

Table 4. Game outcome prediction results using points as the target value

GAME 65 66 67 68 69
TEAM 2 WAS MIL DEN DET DAL

TEAM 1 TOTAL POINTS 52.29244 148.04757 144.25861 154.25470 164.84836
TEAM 2 TOTAL POINTS 149.82268 194.17713 143.84321 243.45083 252.68286

PREDICTED TEAM 1 OUTCOME L L W L L
ACTUAL TEAM 1 OUTCOME L W W L W

GAME 70 71 72 73 74
TEAM 2 POR NYK CLE GSW SAS

TEAM 1 TOTAL POINTS 167.19978 120.18366 148.22923 150.33212 141.24276
TEAM 2 TOTAL POINTS 169.37400 116.49133 217.98367 157.18418 147.08796

PREDICTED TEAM 1 OUTCOME L W L L L
ACTUAL TEAM 1 OUTCOME W W L L L

Figure 4. Sampling of player R2 values across varying compo-
nents in PCA

on it in setting his or her lineup, but it provides some
non-trivial insight about how certain players are likely
to perform against a given opponent in the context of a
certain game/season situation. Particularly, in situations
where the fantasy owner is having trouble deciding which
of two similarly-performing players to start, our fantasy
score prediction/ranking system would be quite helpful.
Furthermore, for those who bet on the outcomes of NBA
games, our game outcome prediction system could be a
useful tool. In our limited experiment, our model achieved
70% accuracy. This is on par with the state-of-the-art NBA
game outcome prediction models, which predict game
outcomes with 68% accuracy (note that the state-of-the-art
models have been tested on more games).

However, there are a number of possible improvements to
our learning model. First, our performance might improve
with an increase in the size of our training set. Our model
uses 15 training games for each prediction. The model
might have benefited from using more training games per

prediction, but, because it is better to train the model using
only games from the current season, there is a tradeoff
between number of training games and number of games
available to make predictions on. Further experimentation
with different numbers of training games could give us
more insight about how to optimize our performance with
respect to this tradeoff. Second, our model has a rich
feature space (92 basic and advanced metrics), but may
include too many features that are not strongly correlated
with players fantasy points. This could be remedied by
using more sophisticated feature selection techniques (e.g.,
greedy hill climbing, targeted projection pursuit) and by
introducing new and potentially more expressive fea-
tures (e.g., team chemistry statistics, shooting tendencies
statistics, SportVU tracking statistics). Third, to further
validate our model, we need to acquire more player game
log data (both from the current season and past seasons)
so that we can test our model on more than just ten games.
Data acquisition was a significant obstacle for us because,
for each game, we need to scrape and clean basic and
advanced stats data for all of the players on both teams in
the game, and, even using an automated process, doing
so for each player took a considerable amount of time.
With more data, we could perform k-fold cross validation,
which would in turn help us determine the best learning
parameters and feature set.

References
[1] Web. 7 Dec. 2015. 〈http://www.basketball-

reference.com〉

[2] Sklearn Supervised Learning Documen-
tation Web. 7 Dec. 2015 〈http://scikit-
learn.org/stable/supervised learning.html〉

[3] B. Ulmer and M. Fernandez Predicting Soccer Match
Results in the English Premier League


